
Plinian Eruption Scenario

Propagation of pyroclastic flows over urban structures

Flavio Dobran

GVES Napoli, Italy www.westnet.com/~dobran

Urban Habitat Constructions Under Catastrophic Events Vilnius, 11-12 April 2008

Modeling objectives

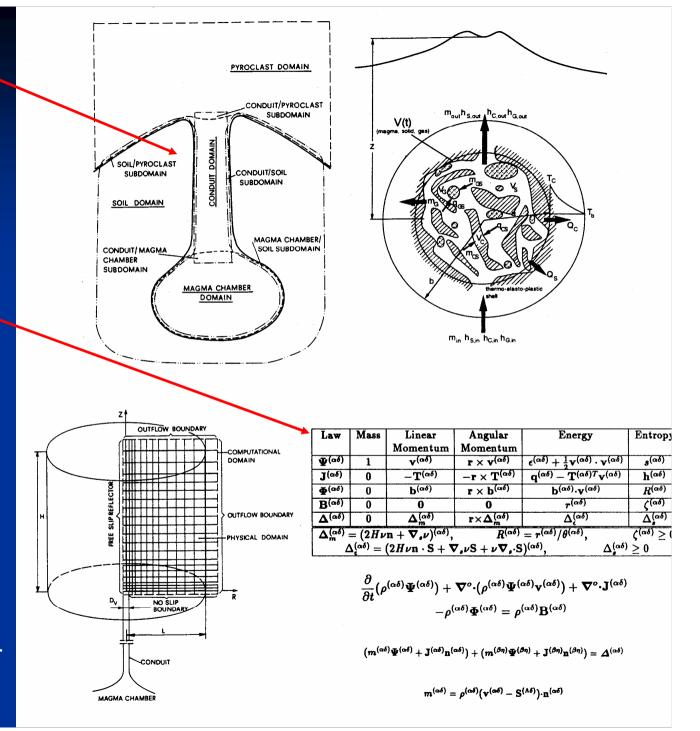
- Global Volcanic Simulator for producing eruption scenarios
- Seismic Zonation models for producing seismic loads
- Structural mechanics models for designing urban structures subjected to volcanic and seismic loads

Global Volcanic Simulator

Dobran (1993, 1994, 2001, 2006)

- Physico-mathematical-computer model of volcanic system
- Determine scenarios and their likelihoods
 - Magma chamber dynamics
 Opening of volcanic conduits
 Conduit flow dynamics
 Dispersion of pyroclasts in the atmosphere
 Ash fall from eruption column
 Propagation of pyroclastic, lava and mud flows
 Dispersion of ballistic blocks

Domain decomposition


- ➢ magma chamber
- ➤ conduit
- ➢ soil and rock
- > atmosphere

3-dimensional

- ➤ transient
- > multiphase
- ➤ nonequlibrium
- ➤ eulerian
- lagrangean (ballistics)

Numerical implementation

- ➤ implicit
- parallel computer architectures

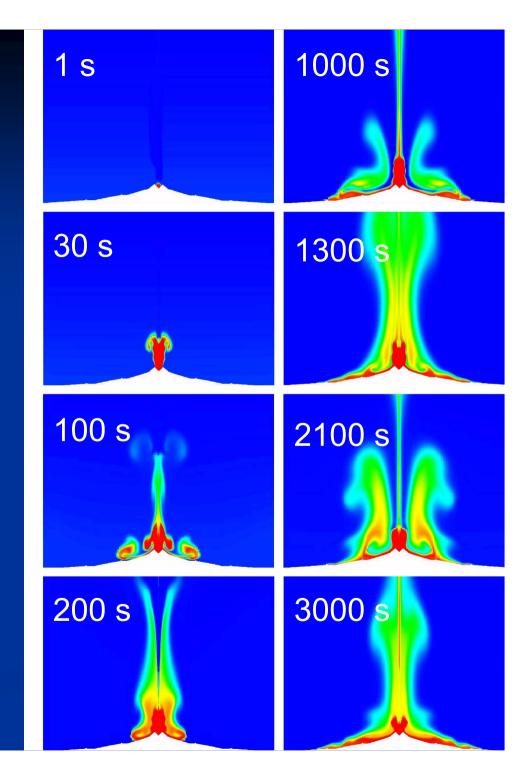
Pyroclastic Dispersion Code

Development stages

1. Verification (solve PDE's correctly)

mass and species conservation for gases and particulates, momentum balance equations for gas and particulates, energy balance equations for gas and particulates, granular kinetic energy equation

2. Validation (solve the right PDE's)


□ This work (preliminary results)

Simulation parameters

- 2-phase nonequilibrium flow of particulates and water vapor discharging into a stratified atmosphere
- 2 dimensional axis-symmetric flow domain 7km x 12 km
- nonuniform computational grid (33,728 cells)
- Vent conditions from magma chamber and magma ascent model of plinian eruption (m = 10⁸ kg/s)
 - D = 100 m
 - V = 118 m/s
 - T = 1123 K
 - P = 1.3 MPa
- Topography: Torre del Greco
- 30 m high structures placed at 3 and 5 km from the vent

Results

- Strong oscillations of pressure, temperature and velocity in the pyroclastic flow produce dynamic loading on structures at 3 and 5 km from the vent
- Stationary structural mechanics models have limited utility for designing buildings on the slopes of Vesuvius

Structural mechanics issues

□ Clarify modeling strategies

Establish usefulness of Zucaro's work

Define responsibilities

Produce reproducibility of results

Vulnerability of structures

Wind (regional, induced by eruption) Earthquakes (regional and volcanic) Ash fall (diameter < 1 cm) Pyroclastic, mud and lava flows Ballistic impacts (d = 10 cm - 1 m) Fire and hazardous materials

> Influence of deformation on loading

Loadings on structures

Structural (dynamic) response

Produce design procedures for building residential, commercial and industrial structures around Vesuvius

Uncertainty analysis

Safety and serviceability at 5, 10, 20, 50 km

References:

Dobran, F., 1991. Theory of Structured Multiphase Mixtures. Springer-Verlag (Springer), New York.

Dobran, F., 1993. Global Volcanic Simulation of Vesuvius. Giardini, Pisa.

Dobran, F., 2001. Volcanic Processes: Mechanisms in Material Transport. Kluwer Academic/Plenum Publishers (Springer), New York.

Dobran, F., 2006. Vesuvius: Education, Security and Prosperity. Elsevier, Amsterdam.